
Memory Protection

Pete? J . D:tming

21 July 1988

RIACS Technicai Repori 88.17

NASA Cooperative Apeerncnt Sumber If OC 2-38 i

[N AS A-CR- 1 8 49 6 1)
1Research I n s t . for Advanced Computer

l!! E !l OR Y PH 0 TEC TI OW N89 -2640 3
-
Science) 1 4 p C S C t 09B

Unclas
G3/60 0 2 179 13

RlACS
Research Institute for Advanced Computer Science

Memory Protection

P e t e r J. Denning

Research Institute €or Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.17
21 July 1988

Accidental overwriting of files or of memory regions belonging to other programs,
browsing of personal files by superusers, Trojan horses, and viruses are examples of
breakdowns in workstations and personal computers that would be significantly
reduced by memory protection. Memory protection is the capability of an operating
system and supporting hardware to delimit segments of memory, to control whether
segments can be read from or written into. and to confine accesses of a program to its
segments alone. The absence of memory protection in many operating systems today is
the result of a bias toward a narrow definition of performance as maximum
instruction-execution rate. A broader definition. including the time to get the job
done, makes clear that cost of recovery from memory interference errors reduces
expected performance. The mechanisms of memory protection are well understood,
powerful, emcient, and elegant. They add to performance in the broad sense without
reducing instruction execution rate.

This is a preprint of the column The Scirnce of Computing for
American Scientiet 76, No. 5 (Septernber-October 1988).

Work reported herein was supported in part by Chbperative Agreement NCC 2-387
between the National Aeronautics and Space 4dministration (NASA)

and the Universities Space Research Association (USRA).

Memory Protect ion

Peter J. Denning

Research Institute for Advanced Computer Science

21 July 1988

Your program contains an error that overwrites an important input file dur-

ing a test. Another error makes it calculate an index outside the subscript range

of an array and incorrectly read a value from storage allocated to another array.

A program running concurrently with yours accidentally writes into your

memory region, destroying your program and data files. An entry in a routing

table is corrupted by a power failure a t a network switching node; copies of the

corrupted data propagate throughout the network, producing a crash that leaves

you isolated. A system programmer with superuser privileges browses your

private, read-only mail files. A program you borrow contains a Trojan horse

that steals or erases some of your files. A program you obtained from a network

bulletin board contains a virus that attacks your operating system and later

erases some of your files.

2/Memory Protection 88.17 (21 July 1988)

These nightmarish examples illustrate breakdowns that can occur in the

operation of computers when memory protection is inadequate or missing.

Memory protection is the capability of an operating system and supporting

hardware to delimit segments of memory, to control whether segments can be

read from or written into, and to allow access to segments of a program rather

than the whole of it. The protection can be extended t o files stored on disks.

Memory protection exemplifies the principle that programs should operate

with the least privilege required to perform their tasks. Where memory protec-

tion prevails, a program cannot write into an input file, refer outside a segment

containing a particular array, or refer outside its own set of segments. A power

failure cannot write into a read-only table, a superuser cannot automatically

override another user's access specifications, a suspected Trojan horse cannot

access outside a limited set of segments during a test, and a virus cannot write a

copy of itself into any of a n operating system's segments.

The need for memory protection was apparent to the early designers of

computer systems. In the late 1950s, the Atlas computer at the University of

Manchester allowed several independent programs to reside simultaneously in

the main memory and included mechanisms that prevented their interfering with

each other. Early time-sharing systems experimented with paged virtual

memory (IBM 360/67 in 1964), file access protection (MIT's CTSS in 1965), vir-

tual machines (IBM M44/44X in 1966), segmented virtual memory (Honeywell

hlultics in 1968, Burroughs B6700 in 1970), and capability-based addressing

88.17 (2 1 July 1988) Memory Protect ion / 3

(Cambridge CAP computer in 1977). The concepts and design principles of

these early systems have been incorporated in today’s large mainframe operating

systems. Excellent accounts of the various developments are provided have been

given by Jerry Saltzer and Michael Schroeder (1) , Maurice Wilkes (2). Elliott

Organick (3 , 4) , and Robert Fabry (5) .

Few of the penetration and virus problems reported in the news would be

possible in machines that use these old memory protection principles (6) . Yet

many of the small operating systems today, such as UNIXTM and the PCs in

widest use, contain relatively few or none of the memory protection mechanisms

and are easily subverted. Many of the microprocessors in modern workstations

and PCs, such as the Intel 80386 and Motorola 68000, contain the requisite

hardware, but the operating system simply ignores it. How has this situation

arisen?

A major reason for the disappearance of the old concern about memory pro-

tection is a bias toward performance, defined as the sustained instruction-

execution rate of a machine. Designers of operating systems and hardware sim-

ply omit any mechanisms that do not, in their assessment, contribute directly to

performance in this narrow sense. Not only do memory protection mechanisms

not increase the instruction-execution rate of a machine, but in the poorer imple-

mentations they noticeably retard it.

In the past several years, hoowever, a major change in attitude has taken

place among computer users. People regularly trust valuable information to

4 ‘34emory Protection 88.17 (2 1 July 1988)

computer files, and years of work can be destroyed in a few milliseconds. It is

now becoming fashionable to demand that computer systems be dependable and

trustworthy as well as fast. When performance is defined in a broad sense --

minimizing the time to get a job done -- the possible loss of files and subsequent

delays in recovering from the loss can be seen as a serious degradation of

expected performance.

In what follows I will describe the main parts of a memory protection

mechanism in an attempt to convey the elegance and power of the design. As we

will see, there need be no significant loss of speed, because most of the access

checking can be done by the hardware in parallel with the main computation.

Most computers consist of processors, fast main memory, and disk memory.

The addressing interface between processor and main memory allows for two

types of commands, “read A ” and “write A .” To read, the processor places

address A into the address register and signals the memory: the memory copies

the value from address A into the data register and returns an acknowledge sig-

nal to the processor. To write, the processor places a value into the data register

and address A into the address register, then signals the memory; the memory

replaces the contents of address A with the value and signals an acknowledg-

ment to the processor. If the memory detects an error during either of these

operations. it returns a fault signal rather than an acknowledgment to the pro-

cessor.

88.17 (21 July 1988) Memory Protect ion/ 5

Most computations are composed of parts - the various program modules

and data files -- which are stored in the disk memory as files. When one of these

parts is loaded into main memory, it is called a segment. A segment can be

described with two numbers, B and L ; B is the base or starting address of the

segment, and L is the length; the segment occupies addresses

B , B + 1 , * . . , B + L - 1 .

When a segment is present in main memory, its descriptor (B ,L) can.be

stored in a register within the addressing mechanism and used in the following

way. The read and write commands are automatically interpreted relative to the

base address in the descriptor register; thus “read A ” is actually applied to

address B + A . While forming address B + A , the memory interface also checks

that A is within the span of the segment -- that is, that OGA < L ; if not, a

range error is signaled, and the processor is not allowed to complete the access to

address B + A .

The descriptor can be extended to include a presence bit P , set to 1 when a

copy of the segment is loaded in main memory and otherwise to 0. If the seg-

ment is marked as not present the hardware signals a missing segment fault that

interrupts the addressing process and brings into execution a program to locate

the file in the disk system, load it, and set the presence bit of the descriptor to 1 .

This basic mechanism provides a processor with read and write access to

exactly one segment, a mode of operation useful when all parts of a computation

are stored in a single segment. It prevents a processor from reading or writing

b/Memory Protection 88.17 (21 July 1988)

regions of memory assigned to any other computation. In practice, however,

there is a need to protect the separate parts of a computation - for example,

when one of the parts is a borrowed program that might contain a Trojan horse

or is a new program module that has not been fully tested. The mechanism

must be refined to allow a set of several descriptors to be associated with a com-

putation.

To do this, each descriptor is marked with a unique key, and all the keyed

descriptors are stored in a table. When given a key, the addressing hardware

searches the descriptor table for an entry with that key. If the search succeeds,

the particular P , B , and L values are indicated as above. High speed associa-

tive memories can be used to hold the descriptor tables so, that the search time

is small compared to the time of a read or write command. Note that the keys

do not change as the segment is moved between the main and disk memories

(differing presence bit values), relocated within the main memory (differing base

values), or altered in size (differing length values). Thus a program’s design is

independent of the details of physical storage, and a major source of program-

ming errors is avoided (7).

How does a computation generate the keys corresponding to the various

segments? Associated with the computation is a segment table that contains a

list of segment accessors, each of which consists of an access code (whose bits

enable reading and writing) and a key that matches one of the descriptors. To

use this table, the processor must specify the segment within which a given

88.17 (21 July 1988) Memory Protection/ 7

address falls; thus “read N , A ” means read the value in address A of segment

N . Using the accessor at position N of the segment table, the addressing

hardware checks that reading (or writing) is permitted by the access code and if

so initiates the search of the descriptor table; the rest is the same as the process

of using a descriptor outlined above. As before, high speed associative memory

can be used to keep these searches to a negligible fraction of the time for reading

and writing. The full mechanism is summarized in the accompanying box.

This design handles shared segments elegantly. There is no requirement

that the computations sharing a given segment assign the same segment number

to it. Program code modules, which are read-only, are the most common candi-

dates for sharing. All the user sessions employing the same text editor, for

example, can have accessors containing copies of the key for the descriptor of the

editor’s instruction code segment. The editor obtains access to text files by

referring to separate segments, and the numbers of those segments can be passed

to the editor as parameters. Because it is not necessary to have more than one

copy of the editor’s code segment loaded in main memory, substantial savings of

memory are possible in multi-user systems.

A simple extension of this mechanism increases its power substantially. A

computation involving a set of segments can be regarded as a unit. For exam-

ple, the set of programs for opening, closing, reading, and writing files can be

encapsulated in a package along with segments containing private information

about the status and location of files in the disk storage system. A call on any

8,’Memory Protection 88.17 (21 July 1988)

one of these four programs automatically switches the computation so that they

operate with their own segment table, which is distinct from the segment table

of the caller. The ability to encapsulate a package substantially increases its

reliability, because none of the private data can be consulted or modified by any

programs other than those authorized to do so. Such a mechanism should

prevent viral infection of package components.

To implement this extension, a computation number C stored in the pro-

cessor is used to inform the addressing mechanism which segment table should

be used. An accessor for C consists of a code enabling “call” and the key “C .”

A segment number, say N , corresponding to an accessor for C is allocated in

the segment table of a computation authorized to call C ; then the command

“call N ” will automatically invoke the entry procedure of C , and the processor

will begin using the segment table to C . Fabry gives a full account of this

mechanism (5) .

Where do the entries in the segment tables come from in the first place?

They come from the file system. Each user owns a tree of directories. Each

directory, stored as a file on a disk, contains entries that point to other files by

giving their unique keys. Each entry also contains a field that points to an

access control list specifying names and access codes for that file. Thus, when

one of my computations attempts to open a file and load it into a memory seg-

ment, the operating system checks whether my name is on the access list of that

file; if so, it creates an accessor with that code whose key is the same as the file’s

88.17 (2 1 July 1988) Memory Protectionfg

unique key.

I have only scratched the surface of what can be done with the design out-

lined here. My intention has been simply to exhibit the design principles of

memory protection, and to suggest that they can be implemented with negligible

impact on instruction execution speed. The added benefits -- significantly

increased protection against faults and errors, reduction in exposure to Trojan

horses and viruses, and resistance against unauthorized access to one’s files - are

well worth the additional design expense.

Scientists and engineers should be much more forceful in expressing their

concerns about memory protection, so that future generations of workstations

and personal computers willbe dependable and secure as well as fast.

References

1.

2.

3.

J. Saltzer and M. Schroeder. 1975. “The pr3tection of information in com-

puter systems.’’ Proc. IEEE 69, 9. September. 1278-1308.

M. V. Wilkes. 1975. Time Sharing Computer Systems. Elsevier North Hol-

land. 3rd Edition.

E. I. Organick. 1972. The MULTICS Systems: An Ezamination of Its Struc-

ture. MIT Press.

~ ~~

1 O/Memory Protection 88.17 (2 1 July 1988)

4 .

5 .

6.

7.

E. I. Organick. 1973. Computer System Organitation: The B5700/6700

Series. Academic Press.

R. Fabry. 1974. “Capability-based addressing.” Communications of A CM

17, 7. July. 403-412.

P. J. Denning. 1988. “Computer viruses.” American Scientist 76, 3 .

May-June. 236-238.

P. J. Denning. 1986. “Virtual memory.” American Scientist 74, 3. May-

June. 227-229.

88.17 (21 July 1988)

Addressing for Memory Protection

Memory Protection,’ll

The addressing mechanism for protected segments contains two levels of mappings that

transform a request like “read address A of segment N of computation C ” into a reference to

the proper memory location B + A .

The upper level consists of segment tables, such as C 1 and C 2 , attached to computations

themselves; it associates a segment number N (1, 2, 3, 4, ...) with an access code and unique key

for each segment. Access code R in the figure enables reading, and access code R W enables both

reading and writing. A shared segment with key K can have different numbers and different

access codes in different computations.

The lower level consists of a descriptor table attached to the memory; it records presence,

base, and length descriptors for each segment. The presence bit P is 1 if a copy of the segment

is in main memory; if P =0, the segment is in disk memory and must be located and loaded in

main memory before it can be used. The base B gives the starting address of a loaded segment.

The length L gives the number of consecutive addresses occupied by the segment. The last

address in the segment is thus B +L -1. Segments can be moved between levels of memory, relo-

cated within main memory, or changed in length without changing segment numbers, access

codes, o r keys or otherwise disturbing any component of a computation.

To read from a segment, a processor operating on behalf of computation C generates a

request “read N , A .” The addressing mechanism looks a t entry N in the segment table for C ;

if read access is permitted, it searches the descriptor table for K ; it then requests memory to

read from B + A , provided tha t O<A <L . These steps can be completed in a negligible fraction

of the time the memory takes to read. If any of the checks embedded in them fails, the address-

ing system stops the processor with a n error signal.

pRocEssoFl

request

ADDRESSING MECHANISM

I

c1 c2

descriptor
table k eY

presence

base

length

number

access
code

